11 Presentations at 2019 EANM Annual Meeting

Eleven accepted works by our team and collaborators (5 oral; 6 posters) are being presented at the 2019 Annual Congress of the European Association of Nuclear Medicine (EANM), taking place in Barcelona on October 12-16:

  • X. Hou, W. Lv, J-M. Buregaurd, A. Celler, and A. Rahmim
    Dose distribution radiomics: a new paradigm for assessment of radioligand therapy
  • W. Lv, S. Ashrafinia, J. Ma, L. Lu, and A. Rahmim
    Multi-level multi-modality fusion radiomics: application to PET and CT imaging for improved prognostication of head and neck cancer
  • S. Ashrafinia, P. Dalaie, M. S. Sadaghiani, T. H. Schindler, M. G. Pomper, and A. Rahmim
    Standardized radiomics of clinical myocardial perfusion stress SPECT images to determine coronary artery calcification score
  • I. Shiri, P. Ghafarian, P. Geramifar, K. H. Leung, M. Oveisi, A. Rahmim, and M. R. Ay
    Deep direct attenuation correction of brain PET images using emission data and deep convolutional encoder-decoder for application to PET/MR and dedicated brain PET scanners
  • I. Shiri, G. Hajianfar, S. Ashrafinia, E. Jenabi, M. Oveisi, and A. Rahmim
    Radiogenomics analysis of PET/CT images in lung cancer patients: Conventional radiomics versus deep learning
  • R. Ataya, C. F. Uribe, R. Coope, A. Rahmim, F. Bénard
    Variable density 3D-grids for non-uniform activity distributions in PET and SPECT phantoms: a proof of concept
  • Y. Zhu and A. Rahmim
    MR-guided partial volume correction of 3D PET images using a split Bregman optimized parallel level set framework
  • C. Miller, A. Rahmim, and A. Celler
    Dual-isotope peptide receptor radionuclide therapies with 177Lu and 90Y: is quantitative imaging possible?
  • C. F. Uribe, N. Colpo, E. Rousseau, F. Lacroix-Poisson, D. Wilson, A. Rahmim, and F. Bénard
    Regularized reconstruction improves signal-to-noise and quantification for 18F- PSMA PET/CT imaging
  • S. Rezaei, P. Ghafarian, A. K. Jha, A. Rahmim, S. Sarkar, and M. R. Ay
    Joint compensation for motion and partial volume effects in PET/CT images of lung cancer patients: impact on quantification for different image reconstruction methods
  • H. Vosoughi, P. Geramifar, M. Hajizade, F. Emami, A. Rahmim, and M. Momennezhad
    Optimized PET reconstructions: can they be harmonized as well?

Presentations at 2019 SNMMI Annual Meeting

The published abstracts can now be found here:
https://rahmimlab.com/publications/conference_proceedings/

Quantitative Tomography Lab

Eight accepted works by our group and collaborators (4 oral; 4 posters) are being presented at the 2019 Annual Meeting of the Society of Nuclear Medicine & Molecular Imaging (SNMMI) in Anaheim, June 22-25:

  • K. H. Leung, S. Ashrafinia, M. S. Sadaghiani, P. Dalaie, R. Tulbah, Y. Yin, R. VanDenBerg, J. P. Leal, M. A. Gorin, Y. Du, M. G. Pomper, S. P. Rowe, and A. Rahmim
    A fully automated deep-learning based method for lesion segmentation in 18F-DCFPyL PSMA PET images of patients with prostate cancer
  • Y. Zhu, Y. Gao, O. Rousset, D. F. Wong, and A. Rahmim
    Post-reconstruction MRI-guided enhancement of PET images using parallel level set method with Bregman iteration
  • J. Kim, S. Seo, S. Ashrafinia, A. Rahmim, V. Sossi, and I. S. Klyuzhin
    Training of deep convolutional neural nets to extract radiomic signatures of tumors
  • P. E. Bravo, B. Fuchs, A. K Tahari, D. Pryma, J. Dubroff…

View original post 155 more words

Presentations at 2019 SNMMI Annual Meeting

Eight accepted works by our group and collaborators (4 oral; 4 posters) are being presented at the 2019 Annual Meeting of the Society of Nuclear Medicine & Molecular Imaging (SNMMI) in Anaheim, June 22-25:

  • K. H. Leung, S. Ashrafinia, M. S. Sadaghiani, P. Dalaie, R. Tulbah, Y. Yin, R. VanDenBerg, J. P. Leal, M. A. Gorin, Y. Du, M. G. Pomper, S. P. Rowe, and A. Rahmim
    A fully automated deep-learning based method for lesion segmentation in 18F-DCFPyL PSMA PET images of patients with prostate cancer
  • Y. Zhu, Y. Gao, O. Rousset, D. F. Wong, and A. Rahmim
    Post-reconstruction MRI-guided enhancement of PET images using parallel level set method with Bregman iteration
  • J. Kim, S. Seo, S. Ashrafinia, A. Rahmim, V. Sossi, and I. S. Klyuzhin
    Training of deep convolutional neural nets to extract radiomic signatures of tumors
  • P. E. Bravo, B. Fuchs, A. K Tahari, D. Pryma, J. Dubroff, and A. Rahmim
    Quantitative renal PET imaging with Rubidium-82 can discriminate individuals with different degrees of renal impairment
  • S. Ashrafinia, M. S. Sadaghiani, P. Dalaie, R. Tulbah, Y. Yin, K. H. Leung, R. VanDenBerg, J. P. Leal, M. A. Gorin, M. G. Pomper, A. Rahmim, and S. P. Rowe
    Characterization of segmented 18F-DCFPyL PET/CT lesions in the context of PSMA-RADS structured reporting
  • I. Shiri, K. H. Leung, P. Ghafarian, P. Geramifar, M. Oveisi, M. R. Ay, and A. Rahmim
    HiResPET: high resolution PET image generation using deep convolution encoder decoder network
  • I. Shiri, K H. Leung, P. Geramifar, P. Ghafarian, M. Oveisi, M. Reza Ay, and A. Rahmim
    PSFNET: ultrafast generation of PSF-modelled-like PET images using deep convolutional neural network
  • I. Shiri, K. H. Leung, P. Ghafarian, P. Geramifar, M. Oveisi, M. R. Ay, and A. Rahmim
    Simultaneous attenuation correction and reconstruction of PET images using deep convolutional encoder decoder networks from emission data

NSERC Discovery Grant Awarded for Quantitative Oncological PET Imaging

We are pleased to announce being awarded an NSERC Discovery Grant. Our proposal (funded for 5 years; $250,000) is entitled, “Quantitative Oncological PET Image Generation and Analysis”. Our aims are to explore: (i) novel data acquisition methods in PET imaging, (ii) advanced 3D and 4D image reconstruction methods for improved image quality and/or dose reduction, integrating advanced models, dynamic as well as motion information; and (iii) advanced radiomics / AI-based image processing towards improved clinical task performance. The grant, aside from its scientific dimensions, emphasizes high-quality training of the next generation of scientist and experts, which is a very important mission of our team.